
Vue.js + Event Pub/Sub

Introduction

Vue (pronounced /vjuː/, like view) is a progressive framework for building user interfaces. Unlike
other monolithic frameworks, Vue is designed from the ground up to be incrementally adoptable.
The core library is focused on the view layer only, and is easy to pick up and integrate with other
libraries or existing projects. On the other hand, Vue is also perfectly capable of powering
sophisticated Single-Page Applications when used in combination with modern tooling and
supporting libraries.

Event Pub/Sub is an application architecture that was designed to break down communication
into events. Everything can be handled via a publish to send or a subscribe to listen. Each
component is isolated and does not need to pass information directly or know about another
component.

Virtual DOM
The virtual DOM is a programming concept where an ideal, or “virtual”, representation of a UI is
kept in memory and synced with the “real” DOM by a library such as ReactDOM. This process is
called reconciliation. Vue.js has a a (VDOM) as well though is considered to be faster and is
declarative in comparison. For a comparison with React as well as other frameworks you can
read about it ​here​.

Declarative Rendering
At the core of Vue.js is a system that enables us to declaratively render data to the DOM using
straightforward template syntax.

Every Vue application starts by creating a new Vue instance with the Vue function:

https://vuejs.org/v2/guide/comparison.html

<​div class​="​v-counter​">
 Counter: {{ counter }}

</​div​>

var​ vCounter = ​new​ Vue({

 ​el​: ​'.v-counter​,

 ​data​: {

 ​counter​: ​0

 }

})

We have already created our very first Vue instance! This looks pretty similar to rendering a
counter, but Vue has done a lot of work under the hood. The data and the DOM are now linked,
and everything is now reactive.

Note that we no longer have to interact with the HTML directly. A Vue instance attaches itself to
a single DOM element (.v-counter in our case) then fully controls it. The HTML is our entry point,
but everything else happens within the newly created Vue instance.

Although not strictly associated with the MVVM pattern, Vue’s design was partly inspired by it.
As a convention, we often use the variable vm (short for ViewModel) to refer to our Vue
instance. When you create a Vue instance, you pass in an options object.

Conditionals and Loops
Vue includes conditionals and looping to help wih updating view dynamically based on data
passed to it. Like the following.

<div ​class​="​v-instance​"​>
 ​​Now you see me​
</div>

var​ vInstance = ​new​ Vue({
 ​el​: ​'.​v-instance​’​,
 ​data​: {
 ​seen​: ​true
 }
})

This example demonstrates that we can bind data to not only text and attributes, but also the
structure of the DOM. Moreover, Vue also provides a powerful transition effect system that can
automatically apply transition effects when elements are inserted/updated/removed by Vue.

There are quite a few other directives, each with its own special functionality. For example, the
v-for directive can be used for displaying a list of items using the data from an Array:

<div ​class​="​v-instance​"​>
 ​
 ​<li v-for=​"todo in todos"​>
 {{ todo.text }}
 ​
 ​
</div>

var​ vInstance = ​new​ Vue({
 ​el​: ​'.v-instance​,
 ​data​: {
 ​todos​: [
 { ​text​: ​'Learn JavaScript'​ },
 { ​text​: ​'Learn Vue'​ },
 { ​text​: ​'Build something awesome'​ }
]
 }
})

Input
To let users interact with your app, we can use the ​v-on​ directive to attach event
listeners that invoke methods on our Vue instances:

<div ​class​="​v-instance​"​>
 ​<p>​{{ message }}​</p>
 ​<button v-on:click=​"reverseMessage"​>​Reverse Message​</button>
</div>

var​ vInstance = ​new​ Vue({
 ​el​: ​'.v-instance​,
 ​data​: {
 ​message​: ​'Hello Vue.js!'
 },

 ​methods​: {
 ​reverseMessage​: ​function​ () ​{
 ​this​.message = ​this​.message.split(​''​).reverse().join(​''​)
 }
 }
})

Data and Methods
When a Vue instance is created, it adds all the properties found in its data object to Vue’s
reactivity system. When the values of those properties change, the view will “react”, updating to
match the new values.

// Our data object
var​ data = { ​a​: ​1​ }

// The object is added to a Vue instance
var​ vm = ​new​ Vue({
 ​data​: data
})

// Getting the property on the instance
// returns the one from the original data
vm.a == data.a ​// => true

// Setting the property on the instance
// also affects the original data
vm.a = ​2
data.a ​// => 2

// ... and vice-versa
data.a = ​3
vm.a ​// => 3

When this data changes, the view will re-render. It should be noted that properties in data are
only reactive if they existed when the instance was created. That means if you add a new
property, like:

vm.b = ​'hi'

Instance Lifecycle Hooks
Each Vue instance goes through a series of initialization steps when it’s created - for example, it
needs to set up data observation, compile the template, mount the instance to the DOM, and
update the DOM when data changes. Along the way, it also runs functions called lifecycle
hooks, giving users the opportunity to add their own code at specific stages.

For example, the created hook can be used to run code after an instance is created:

new​ Vue({
 ​data​: {
 ​a​: ​1
 },
 ​created​: ​function​ () ​{
 ​// `this` points to the vm instance
 ​console​.log(​'a is: '​ + ​this​.a)
 }
})

For reference please use this diagram to see the complete lifecycle of a Vue instance ​here​.

Template Syntax
Vue.js uses an HTML-based template syntax that allows you to declaratively bind the rendered
DOM to the underlying Vue instance’s data. All Vue.js templates are valid HTML that can be
parsed by spec-compliant browsers and HTML parsers.

Under the hood, Vue compiles the templates into Virtual DOM render functions. Combined with
the reactivity system, Vue is able to intelligently figure out the minimal number of components to
re-render and apply the minimal amount of DOM manipulations when the app state changes.

This list includes a vast assortment like Interpolation and directives. For reference you can see
them all ​here​.

Partials/Instances

For each part of the page, developers create separate partial Vue instances scoped to a subset
of data from the Central Store Vue.js instance. These partials should be relatively simple
implementation wise:

https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram
https://vuejs.org/v2/guide/syntax.html

● Tied to a specific DOM element (specific section of HTML markup)
● Should only one-way bind and use/present the data that they are concerned with
● Publish and subscribe to events

The following is an example of a partial Vue instance that can show message indicators:

const​ el = '.v-snackbar';
const​ $el = $(el);
if (!$el.length) {
return;
}
const​ vSnackbar = ​new​ Vue({
el: el,
data: {

data: {
msg: ''

},
state: {

show: false,
error: false

}
},
methods: {

},
mounted: ​function​ () {

vApp.$on('snackbar:show', ({ msg, err }) => {
this.$data.data.msg = msg || _.get(snackbarCfg, 'fallbackMsg');
this.$data.state.err = err;
this.$data.state.show = true;
_.delay(() => this.$data.state.show = false, 3000);

});
},
beforeDestroyed: ​function​ () {

vApp.$off('snackbar:show');
}
});

window.vSnackbar = vSnackbar;

<div ​class​="v-snackbar">
 <div ​class​="snackbar" v-if="state.show" v-bind:class="{show: state.show,
error: state.err}">
 <div v-text="data.msg"></div>
 </div>
</div>

The Vue instance here manages a global message indicator for that app.

State Management
It is often overlooked that the source of truth in Vue applications is the raw data object - a Vue
instance only proxies access to it. Therefore, if you have a piece of state that should be shared
by multiple instances, you can share it by identity:

var​ sourceOfTruth = {}

var​ vmA = ​new​ Vue({
 ​data​: sourceOfTruth
})

var​ vmB = ​new​ Vue({
 ​data​: sourceOfTruth
})

Now whenever sourceOfTruth is mutated, both vmA and vmB will update their views
automatically. Subcomponents within each of these instances would also have access via
this.$root.$data. We have a single source of truth now, but debugging would be a nightmare.
Any piece of data could be changed by any part of our app at any time, without leaving a trace.

To help solve this problem, we can adopt a store pattern:

var​ store = {
 ​debug​: ​true​,
 ​state​: {
 ​message​: ​'Hello!'
 },
 setMessageAction (newValue) {
 ​if​ (​this​.debug) ​console​.log(​'setMessageAction triggered with'​, newValue)
 ​this​.state.message = newValue
 },
 clearMessageAction () {
 ​if​ (​this​.debug) ​console​.log(​'clearMessageAction triggered'​)
 ​this​.state.message = ​''
 }
}

Notice all actions that mutate the store’s state are put inside the store itself. This type of
centralized state management makes it easier to understand what type of mutations could

happen and how they are triggered. Now when something goes wrong, we’ll also have a log of
what happened leading up to the bug.

In addition, each instance/component can still own and manage its own private state:

var​ vmA = ​new​ Vue({
 ​data​: {
 ​privateState​: {},
 ​sharedState​: store.state
 }
})

var​ vmB = ​new​ Vue({
 ​data​: {
 ​privateState​: {},
 ​sharedState​: store.state
 }
})

Event Pub/Sub

This allows different instances to communicate it without needing to have a direct reference or
share data. This is made possible via an event bus that allows messages to be sent and
received via a publish and subscribe architecture.

mounted: ​function​ () {

vApp.$on('snackbar:show', ({ msg, err }) => {
this.$data.data.msg = msg || _.get(snackbarCfg, 'fallbackMsg');
this.$data.state.err = err;
this.$data.state.show = true;
_.delay(() => this.$data.state.show = false, 3000);

});
},
beforeDestroyed: ​function​ () {

vApp.$off('snackbar:show');
}

The example snippet from our snackbar above creates a subscript that the vue instance can
listen to. This allows it to react to message received from the bus. For example if we have a
need to show a error message the following would trigger the snackbar:

_.delay(() => vApp.$emit('snackbar:show', {
 msg: _.get(snackbarCfg, `addToCartCatch.${cartName === 'Default' ? 'cart'
: 'wishlist'}`),
 err: true
}));

Services
Allows for data communication and business logic to be handled in a event bus i.e pub/sub
approach. The following create a global Vue instance that can be accessed anywhere. In
addition and more importantly it allows service to subscribe to this global event bus and listen to
and react to incoming messages.

const​ vApp = ​new​ Vue({});
window.vApp = vApp;
const vApp = window.vApp;
vApp.$on('cart:getCart', ​function​ () {
 const state = { active: false };
 return (req) => {
 ​const​ cartName = req && req.cartName;
 if (state.active) { return; }
 // state.active = true;
 console.log('cart:getCart');
 vApp.$emit('loadingBar:show');
 return $.ajax({
 url: `/api/cart/${cartName ? cartName : 'Default'}`,
 type: 'GET',
 contentType: "application/json",
 dataType: 'json',
 }).then((res) => {
 state.active = false;
 state.cart = res;
 console.log(`cart:getCart${cartName ? (':' + cartName) :
''}:then`, res);
 vApp.$emit(`cart:getCart${cartName ? (':' + cartName) : ''}:then`,
res);
 vApp.$emit('loadingBar:hide');
 });
 }
}());

This allows vue instances / partials to emit/trigger requests to this service and the service can
internally manage it’s business logic and how it reacts. In addition this service can now be
subscribed to anywhere in the application and each subscriber can handle the data being
emitted from this service however it needs to. Examples include a cart view and a cart icon in
the header.

References
● https://vuejs.org/
● https://github.com/vuejs/awesome-vue
● https://www.digitalocean.com/community/tutorials/vuejs-global-event-bus

https://vuejs.org/
https://github.com/vuejs/awesome-vue
https://www.digitalocean.com/community/tutorials/vuejs-global-event-bus

